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Self-Organizing Maps (SOMs, also known as Kohonen networks) belong to neural net-
work models of the unsupervised class allowing for dimension reduction in data without a
significant loss of information. SOMs preserve the underlying topology of high-dimensional
input and transform the information into one or two-dimensional layer of neurons. The
projection is nonlinear, and in the display, the clustering of the data space and the metric-
topological relations of the data items are visible [Koh97]. In comparison to other techniques
of reducing dimensionality, SOMs have many advantages. They do not impose any assump-
tions regarding the distributions of the variables and do not require independence among
variables. They allow for solving non-linear problems; their applications are numerous, e.g.,
in pattern recognition (see, e.g., [GC91]), brain studies [BHC+93, RGC+97, PA13] or biolog-
ical modeling [MVJB03, BNT+12]. At the same time, they are relatively easy to implement
and modify [Koh97, AE12].

A typical setup for SOM assumes usage of a region of Euclidean plane. Most data
analysts take it for granted to use some subregions of a flat space as their data model;
however, by the assumption that the underlying geometry is non-Euclidean we obtain a new
degree of freedom for the techniques that translate the similarities into spatial neighborhood
relationships. Moreover, non-Euclidean geometries are steadily gaining attention of the data
scientists [Was18, CM17]. In particular, hyperbolic geometry has been proven useful in data
visualization [Mun98] and the modeling of scale-free networks [KPK+10, PKS+12]. Such
a usefulness comes from the exponential growth property of hyperbolic geometry, which
makes it much more appropriate than Euclidean for modeling and visualizing hierarchical
data. Since the idea of SOM roots in geometry, we expect to gain new insights from non-
Euclidean SOM setups. Surprisingly, there are nearly no attempts to do so. Even if there
have been propositions to use hyperbolic geometry in SOMs [Rit99, OR01], other possibilites
of inclusion of non-Euclidean geometries and different topologies (e.g., spherical geometry,
quotient spaces) have been neglected. There is also no research on characteristics of data
that affect the quality of Self-Organizing Maps.

Although we have numerous technical contributions on the algorithm itself, the presenta-
tion will focus on the quantitative analysis of the experimental data. We represent the data
inside Rk as usual. Our algorithm aims to find a lower-dimensional representation, e.g., the
data actually lies on a two-dimensional sphere in Rk and we want to recover this shape.
The embedding manifold E represents this shape. In real-life applications, we usually do not
know how the manifold E is embedded in Rk, so finding out what SOM’s template we should
use is non-trival. Even if our core algorithm is used to find such a mapping, a wrong choice
might come with a high cost of obtaining irrelevant results. That is why we analyze factors
that might affect the quality of topology preservation. Our general experimental setup is as
follows.



• We construct the original manifold O. Let TO be the set of tiles and EO be the set of
edges between the tiles.

• We map all the tiles into the Euclidean space m : TO → Rd, where d is the number of
dimensions.

• We construct the target embedding manifold E. Let TE be the set of tiles and EE be
the set of edges between the tiles.

• We apply our algorithm to the data given by m, This effectively yields an embedding
e : TO → EO.

• We measure the quality of the embedding.

To limit the effects of randomness (random initial weight of neurons, random ordering
of data) we apply this process independently 100 times for every pair of manifolds E and
O. Our quantitative analyses based on OLS and Tobit regressions show that the shape of
data matters for Self-Organizing Maps. We use measures of topology preservation from the
literature, as well as our own measures.
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